SCIENTIFUR scientific information for those involved in fur animal production is published by the International Fur Animal Scientific Association (IFASA).

SCIENTIFUR is the focal point for fur animal researchers all over the world and serves as a platform for scientific and other communication among researchers and others who are interested in the production of fur bearing animals. As such SCIENTIFUR contains reports of both basic and applied research as well as abstracts of publications published elsewhere and information regarding congresses, scientific meetings etc. A reference in Scientifur does not imply an endorsement by IFASA of the content, views or conclusions expressed.

SCIENTIFUR is published as four issues per year (one volume).

SCIENTIFIC ARTICLES. Papers forwarded can be published in Scientifur. The scientific content of the article is the sole responsibility of the author(s)

EDITOR'S ADDRESS. Articles for publication in SCIENTIFUR have to be forwarded to the Editor:

Vivi Hunnicke Nielsen
SCIENTIFUR
P.O Box 14
DK-8830 Tjele, Denmark
Tel: +45 2219 1351
E-mail: Scientifur@dca.au.dk

SUBSCRIPTION: Free of charge: http://www.ifasanet.org

TREASURER’S ADDRESS. Correspondence to the Treasurer should be addressed to:

Steen H. Møller
IFASA
P.O. Box 14
DK-8830 Tjele, Denmark
Tel: +45 8715 7926
Fax: +45 8715 4249
E-mail: IFASA@anis.au.dk

INDEXING: Titles that have been published in SCIENTIFUR are covered in an electronic SCIENTIFUR INDEX.

Regional Scientifur Representatives
Finland: Dr. Tarja Koistinen: E-mail: tarja.koistinen@luke.fi
Iceland: Advisor Einar Einarsson: E-mail: einare@krokur.is
Poland: Dr. Robert Głogowski: E-mail: robert_glogowski@sggw.pl
USA: Dr. Jack Rose: E-mail: rosewill@isu.edu

International Fur Animal Scientific Association (IFASA). Board of directors:
Dr. Steen H. Møller (President, Treasurer): E-mail: IFASA@anis.au.dk
Dr. Bruce D. Murphy (Vice President): E-mail: murphyb@MEDVET.Umontreal.CA
Mr. John Papsø: E-mail: jpa@kopenhagenfur.com
Jussi Peura: E-mail: jussi.peura@profur.fi /jussi.peura@slu.se
Kai-Rune Johannessen: E-mail: k.r.johannessen@norpels.no
Dr. Marian Brzozowski: E-mail: brzozowskim@delta.sggw.waw.pl

ISSN: 2445-6292
1. Contents 1

2. Notes 5

3. IFASA Congress 2020 7

4. Abstracts 9

BREEDING, GENETICS AND REPRODUCTION 9

Morphological Characterization and Gene Expression Patterns for Melanin Pigmentation in Rex Rabbit 9

NUTRITION, FEEDING AND MANAGEMENT 9

Amino acid availability of protein meals of different quality for adult and growing mink (Neovison vison) 9
Tjernsbekk MT, Tauson AH, Matthiesen CP, Ahlstrom Ø

Microbiological quality of mink feed raw materials and feed production areas 10
Lyhs U, Frandsen H, Andersen B, Nonnemann B, Hjulsager C, Pedersen K, Chriél M
Evaluation of collagen and elastin content in skin of multiparous minks receiving feed contaminated with deoxynivalenol (DON, Vomitoxin) with or without bentonite supplementation
Taszkun I, Tomaszewska E, Dobrowolski P, Zmuda A, Sitkowski W, Muszynski S

Relationships between mercury concentrations in fur and stomach contents of river otter (Lontra Canadensis) and mink (Neovison vison) in Northern Alberta Canada and their applications as proxies for environmental factors determining mercury bioavailability
Eccles KM, Thomas PJ, Chan HM

The effect of fish and mealworm larvae meals as alternative dietary protein sources on nutrient digestibility and gastrointestinal function in Chinchilla lanigera
Gugolek A, Strychalski J, Juskiewicz J, Zary-Sikorska E

Comparative analysis of the gut microbiota of the blue fox (Alopex lagopus) and Raccoon dog (Nyctereutes procyonoides)
Hypothalamic Liu H, Li Z, Si H, Zhong W, Fan Z, Li G

Methods for the identification of farm escapes in feral mink (Neovison vison) populations
Pagh S, Pertoldi C, Petersen HH, Hansen TS, Madsen S, Kraft DCE, Iversen N, Roslev P, Chrïél M

Features of the femoral proximocaudal joint capsule insertion among canids

BEHAVIOUR AND WELFARE

The history of farm foxes undermines the animal domestication syndrome
Lord KA, Larson G, Coppinger RP, Karlsson EK

Hypothalamic transcriptome of tame and aggressive silver foxes (Vulpes vulpes) identifies gene expression differences shared across brain regions

Understanding the social systems: Structure and temporal stability of red fox (Vulpes vulpes) groups
Dorning J, Harris S

HEALTH AND DISEASE

Development and validation of nucleic acid tests to diagnose Aleutian mink disease virus
Virtanen J, Aaltonen K, Vapalahti O, Sironen T

Mink Aleutian disease seroprevalence in China during 1981-2017: A systematic review and meta-analysis
Gong QL, Li D, Diao NC, Liu Y, Li BY, Tian T, Ge GY, Zhao B, Song YH, Li DL, Leng X, Du R

Development of an EvaGreen-based real-time PCR assay for detection of Aleutian mink disease virus

Breeding parameters on a mink farm infected with Aleutian mink disease virus following the use of methisoprinol
Kowalczyk M, Gasiorek B, Kostro K, Borzym E, Jakubczak A
Development and evaluation of a direct TaqMan qPCR assay for the rapid detection of diverse carnivore amphiparvovirus
Wu YH, Wie T, Zhang XT, Zhao YQ, Wang JK, Cong L, Xu BZ, Shao XQ

Phylodynamic analysis of two amino acid substitutions in the hemagglutinin protein of canine distemper virus strains detected in fur-bearing animals in China

Viral nonstructural protein 1 induces mitochondrion-mediated apoptosis in mink enteritis virus infection

Occurrence and genomic characterization of two MCR-1-producing Escherichia coli isolates from the same mink farmer

Helminths of mustelids with overlapping ecological niches: Eurasian otter *Lutra lutra* (Linnaeus, 1758), American mink *Neovison vison* (Schreber, 1777) and European pole cat *Mustela putorius* (Linnaeus, 1758)
Nugaraitė D, Mazeika V, Paulauskas A

Acholeplasma equirhinis sp. nov. isolated from respiratory tract of horse (*Equus caballus*) and mycoplasma procyoni sp. nov. isolated from oral cavity of raccoon (*Procyon lotor*)
Volokhov DV, Gao Y, Davidson MK, Chizhikov VE

Serotypes and virulence genes of *Pseudomonas aeruginosa* isolated from mink and its pathogenicity in mink

Prevalence and genotyping of *Toxoplasma gondii* infection in raccoon dogs (*Nyctereutes Procyonoides*) in Northern China

5. Symposiums and congresses

NJF Seminar 505 – Autumn meeting in fur animal research 2018, Malmö

BEHAVIOUR AND WELFARE SESSION

Scientific review of mink welfare in Sweden
Lidfors L

Cross-fostering in mink: time after birth influence maternal behavior and offspring growth
Malmkvist J

Searching for optimal wintering conditions for young Finnraccoon females
Koistinen T, Sepponen J, Raatikainen S, Korhonen HT

Extra water for kits and ad-ribitum feed for mink dams also benefit mink on private farms, but effects differ from research
Møller SH

Science-based animal welfare in the European fur sector
Sura J
NUTRITION AND MANAGEMENT SESSION

Iron supplementation to mink kits at day three after birth
Blaabjerg K, Clausen TN, Kjærup RB, Steensgaard IB, Larsen PF

The need of vitamin supplementation in female mink during the winter period
Jensen SK, Hedemann MS, Larsen PF, Clausen TN

Weight data collected on Danish farms in 2015-2018, from early winter to the females giving birth, in order to find the optimal weight development curve for maximal number of kits born
Nielsen RH

Effect of feed energy and protein level on performance in blue fox (Vulpes lagopus) in late growing-furring period
Ylinen V, Mohaibes M, Peura J, Lassén TM, Valaja J

Effect of tetradecylthioacetic acid (TTA) on body fat deposition in silver foxes (Vulpes vulpes)
Ahlstrøm Ø, Berge RK, Bjørndal B, Chen X

The effect of biochar-peat mixture on the odour from mink manure
Hellstedt M

BREEDING AND GENETICS SESSION

Implementation of body mass index for Finnish blue fox
Peura J

VETERINARY AND PATHOLOGY SESSION

Parvoviruses of mink and fox – molecular epidemiology and prevention
Sironen T, Moisander-Jylha AM, Virtanen J, Aaltonen K, Vapalahti O

Preliminary results of clinical and gross pathological studies of cystitis and urolithiasis in farm mink (Neovison vison)

POSTER SESSION

Is fur chewing associated with reproductive performance in blue fox vixens?
Mononen J, Koistinen T

How to improve the outcome of the animal protection inspections on Finnish fur farms
Koistinen T

Detection of the heat-related odours in blue fox vixens by trained dog – a pilot study
Ojala E

Additional water for mink kits and a netting insert in the nest box can reduce kit loss in the nursing period
Henriksen BIF, Malmkvist J, Møller SH

Characterization of Escherichia coli isolates from healthy and diseased mink
De Rond J, Wiegel J, Molenaar RJ
Notes from the Editor

Every fourth year, the International Fur Animal Scientific Association (IFASA) in cooperation with institutions and business organisations in countries with important fur animal productions organises an International Scientific Congress in Fur Animal Production. The latest congresses were held in Denmark in 2012 and in Finland in 2016. In 2020, the congress will be held in Warsaw in Poland, in a collaboration between IFASA and the Polish Society of Animal Production.

The IFASA Congress is an important forum for researchers in fur animal production who gather to present and discuss recent research and outline research to address future challenges. I encourage all researchers with interest in fur animal production to participate in this important event. Important topics are health and diseases, breeding, genetics and reproduction, nutrition, feeding and management and behaviour and welfare.

Please, note the following deadlines! Deadline for abstracts is February 2, 2020 and for an early bird registration fee it is February 29, 2020. More information about the IFASA Congress can be found in this issue of Scientifur and on the IFASA website: http://ifasanet.org/ and the organizer's website: http://ifasa2020.pl/

Several abstracts in this issue of Scientifur deal with nutrition. This includes protein and amino acid availability in different feeds for young growing and adult mink. The microbiological quality of the feed is another matter dealt with. With cost of feed being the most important cost in the fur animal production and crucial for the growth and health of the animals, these are important topics. Other abstracts deal with Aleutian disease, which is of particular concern in mink production.

Vivi Hunnicke Nielsen

Editor Scientifur
The XII International Scientific Congress in Fur Animal Production
August, 25-27, 2020, Warsaw, Poland

Invitation

Dear Friends,

On behalf of the International Fur Animal Scientific Association (IFASA) and the Polish Society of Animal Production (PSAP) we are very pleased to invite you to the XII International Scientific Congress in Fur Animal Production. The Congress will be held in Warsaw, in August 2020.

Organized every 4 years Congresses are a meeting places for scientists from around the world dealing with all aspects of fur animal breeding. It is an opportunity both to present the results of the latest research and to discuss the future and development of the fur branch.

The Congress will be organized by Polish Society of Animal Production, an organization which since 1922 has been gathering Polish scientists working in the area of animal husbandry. The place of the Congress will be Warsaw, a city that hosted participants of the VI International Scientific Congress in Fur Animal Production in 1996. This is a special challenge for us, because there will be some participants who remember the previous meeting in Warsaw. We want to show you how Warsaw and Poland have changed and developed over this quarter of a century, also in terms of fur animals breeding.

Prof. Roman Niźnikowski
President of PSAP

Prof. Marian Brzozowski
Organizing Committee

Website: ifasa2020.pl
Warsaw - beautiful and surprising destination

Think of a city that offers numerous advantages and interesting experiences. Think of a European metropolis that can bring a smile to the faces of tourists, businessmen and art lovers? You’re thinking of Warsaw! No matter whether you come to Warsaw for business or for pleasure, the city has all the attractions you need to make your time in the city a perfect one.

Congress Venue

Get the celebrity treatment with world-class service at The Westin Warsaw. The hotel is located in the centre of Warsaw, 5 minutes’ walking distance from the Palace of Culture and Science, Warsaw Central Railway Station.

Call for abstracts

Abstracts should be submitted using the online application on website https://ifasa2020.pl/abstracts. Abstracts are required in English. The abstract should contain the specific objectives, experimental methods and statistical analyses used, together with a synthesis of the results and conclusions. The title, authors and the abstract must not exceed 2250 characters (including spaces).

Abstract Deadline: February 2, 2020

Registration fees:

<table>
<thead>
<tr>
<th></th>
<th>Early bird fee (till February 29, 2020)</th>
<th>Regular fee (after February 29, 2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFASA Delegate</td>
<td>550 €</td>
<td>650 €</td>
</tr>
<tr>
<td>Accompanying Person</td>
<td>300 €</td>
<td>300 €</td>
</tr>
</tbody>
</table>

Congress Secretariat: Symposium Cracoviense, PCO
PL 31-123 Kraków, ul. Krupnicza 3
Ph +48 12 4227600 Fax +48 12 4213857
Contact person: Agnieszka Bryk, ifasa2020@symposium.pl
BREEDING, GENETICS AND REPRODUCTION

Morphological Characterization and Gene Expression Patterns for Melanin Pigmentation in Rex Rabbit

Hu S1, Zhai P2, Chen Y1, Zhao B1, Yang N1, Wang M1, Xiao Y1, Bao G3, Wu X4

1College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
2Animal Husbandry and Veterinary Research Institute, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China.
3Animal Husbandry and Veterinary Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
4College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Animal melanin has an important role in the formation of animal fur and skin, which is determined by its quantities, character, and distribution. To identify the effect of melanin on the formation of multi-colored Rex rabbits (Black, Chinchilla, Beaver, Protein cyan, Protein yellow, White), the structure of hair follicles and melanin content in multi-colored Rex rabbit skins were observed by Hematoxylin and Eosin (H&E) staining and melanin staining, respectively. The melanin granules were primarily found in the epidermis and hair follicle roots. The melanin content of skin was measured by extracting melanin from skin tissue. The results demonstrated that the melanin content was the highest in the skin of black Rex rabbit. Additionally, we measured the mRNA and protein expression levels of melanin-related key genes (MITF and TYR) in the skin of different hair color by quantitative real-time PCR and Wes assay, respectively. The results revealed that the mRNA expression levels in the skin of black Rex rabbit was highly expressed when as compared with other Rex rabbit skin (P < 0.01), and they were the lowest in the skin of white Rex rabbit. Finally, correlation analysis was conducted between melanin content and the expression levels of mRNA and protein. The results indicated a significant correlation between melanin content and the mRNA expression of MITF (P < 0.05), but it was not correlated with the mRNA expression of TYR (P > 0.05). In summary, melanin deposition has important economic value, and the coat color of fur-bearing animals is partly determined by the melanin-related genes.

NUTRITION, FEEDING AND MANAGEMENT

Amino acid availability of protein meals of different quality for adult and growing mink (Neovison vison)

Tjernsbekk MT1, Tauson AH1,2, Matthiesen CF2, A hlstrom Ø1

1Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
2Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Protein and amino acid (AA) availability of three protein meals of expected different quality were evaluated in young growing and adult mink. Lamb meal (LM), poultry meal (PM) or fishmeal (FM) were used as main protein sources in three extruded diets investigated by determining apparent total tract digestibility (ATTD) and nitrogen balance in 12 growing mink males aged 8-11 weeks in a Latin square design. In adult mink, ATTD of the diets was determined. The diets had lower protein content than recommended for growing mink, protein contributing 23% of total metabolisable energy (ME), to ensure differences in growth response. The LM diet with expected low protein quality revealed lower content of essential AA than the PM and FM diets. The ATTD of major nutrients and essential AA was significantly affected by diet, with the poorest values for LM, intermediate for PM and the highest values for FM. Mink kits revealed lower ATTD values than adults for protein, AA and especially fat, resulting in lower dietary ME content for kits than for adults. The mean difference was greatest for the LM diet with lowest ATTD and smallest for the FM diet with the highest ATTD. Nitrogen retention and growth rate differed significantly among diets and was lowest for diet LM and highest for diet FM, respectively. Different dietary essential AA contents and ATTD, especially of methionine, were the main factors to explain the difference in growth response. Generally, plasma essential AA concentrations did not clearly reflect the different dietary supply and the different
growth response. The study shows that a recommended level of 0.31 g apparent total tract digestible methionine per MJ ME covers the minimum requirement with a safety margin. To obtain optimal growth, the lower digestive capacity in young mink kits should be considered when choosing feed ingredients.

Epub ahead of print.

Microbiological quality of mink feed raw materials and feed production area

Lyhs U¹,², Frandsen H³, Andersen B¹, Nonnemann B³, Hjulsager C⁵,⁶, Pedersen K⁷, Chriël M⁵,⁸
¹National Veterinary Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800, Kgs. Lyngby, Denmark.
²Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O.Box 20, Tukholmankatu 8, 00014, Helsinki, Finland.
³National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800, Kgs. Lyngby, Denmark.
⁴Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800, Kgs. Lyngby, Denmark.
⁵National Veterinary Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800, Kgs. Lyngby, Denmark.
⁶Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.
⁷Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Ulls väg 2B, 751 89, Uppsala, Sweden.
⁸Environmental Protection Agency, Tolderlundvej 5, 5000, Odense C, Denmark.

Background
The quality of mink feed and raw ingredients affect health and growth. The objectives of this study were to examine the microbiological quality of ready-to-eat mink feed and its raw ingredients, screen the plant part of the feed for mycotoxins, and determine the hygiene of the production environment in the feed processing facilities. The results of the study are important for identification of critical steps in the feed production and for formulation of recommendations for improvements of production processes to obtain better quality feed. Feed and swab samples were taken at three Danish mink feed producers October 2016 and May 2017, respectively. Viable counts, detection of methicillin-resistant Staphylococcus aureus (MRSA), influenza virus and filamentous fungi were performed together with qualitative chemical analyses for bioactive fungal metabolites and mycotoxins. Swab samples were analyzed for total viable counts.

Results
Viable counts varied between 7.2×10^2 and 9.3×10^7 cfu/g in raw ingredients and between 10^7 and 10^9 cfu/cm² on different surfaces at the feed production facilities. A pork meat product, pork haemoglobin, pork liver and a poultry mix was found positive for MRSA, while monophasic Salmonella [4,5,12:i:-] was detected in a pork meat product. Neither MRSA nor Salmonella was detected in any ready-to-eat feed. Influenza A virus was not detected in any sample. Filamentous fungi were detected in all analysed samples of ready-to-eat feed while dihydrodemethyl-sterigmatocystin was found in almost 50% of all ready-to-eat feed samples and in 80% of the sugar beet pulp. Fumonisins and other Fusarium toxins were found especially in corn gluten meal and extruded barley and wheat.

Conclusions
Mink feed contained a cocktail of mycotoxins and bacteria, which may not per se cause clinical disease, but may affect organ function and animal performance and well-being.

Evaluation of Collagen and Elastin Content in Skin of Multiparous Minks Receiving Feed Contaminated with Deoxynivalenol (DON, Vomitoxin) with or without Bentonite Supplementation

Taszkun I¹, Tomaszewska E², Dobrowolski P³, Żmuda A⁴, Sitkowski W⁵, Muszyński S⁶
¹Sub-Department of Clinical Diagnostics and Veterinary Dermatology, Department and Clinic of Animal Internal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka St. 30, 20-612 Lublin, Poland.

10
Deoxynivalenol (DON, vomitoxin) is considered one of the most dangerous mycotoxins contaminating cereal products for food and feed. One of the protective methods against the adverse effect of DON on mink health is to use a component such as bentonite as a feed supplement to allow toxins absorption. The aim of this study was to determine the effect of DON, administered alone or with bentonite, on the histological structure of the skin and the content of collagen and elastin. A multiparous minks from control group (not exposed to DON) and a study groups receiving fed with DON-containing wheat for seven months: I: at a concentration of 1.1 mg/kg of feed, II: at a concentration of 3.7 mg/kg; III: DON at a concentration of 3.7 mg/kg and bentonite at a concentration of 0.5 kg/1000 kg of feed (0.05%); and IV: DON at a concentration of 3.7 mg/kg and bentonite at a concentration 2 kg/1000 kg (0.2%). After performing euthanasia and before pelting, skin samples of 2 cm in diameter were drawn from the multiparous minks from the lateral surface of the right anterior limb. Our obtained results clearly indicate that DON administered for a period of seven months at a dose of 1.1 mg/kg significantly changes the thickness of skin of a multiparous mink. It causes an increase in the percentage of elastin from 5.9% to 9.4% and a decrease in immature collagen, which results in a change in the collagen/elastin ratio from 10/1 to 5/1. A dose of 3.7 mg/kg DON in feed without or with 0.05% bentonite causes the absence of immature collagen in the dermis, but the addition of 0.2% bentonite in the feed reveals the presence of immature collagen and increase the percentage of the elastin.

(FM) and mealworm meal (MWM) included in complete pelleted diets on nutrient digestibility and gastrointestinal function in chinchillas. The experiment was performed on 24 male, divided into three groups, n=8. Control group (C) was fed a diet containing 10% soybean meal (SBM). In the experimental group FM, chinchillas received a diet containing 3% fish meal, and the diet administered to the experimental group MWM was supplemented with 4% dried mealworm larvae meal. The nutrient digestibility of diets was determined. At the end of the experiment animals were euthanized and their digestive tracts were removed to analyze gut activity. FM group animals were characterized by lower crude fat digestibility, whereas both alternative protein sources improved the digestibility of acid detergent fiber (ADF). A considerable increase in the activity of cecal intracellular and extracellular bacterial enzymes (in particular β-glucosidase, β-galactosidase and β-xylosidase) was noted in the FM group, which however did not increase the concentrations of short-chain fatty acids (SCFA). The inclusion of MWM in chinchilla diets shifted the bacterial fermentation site from the cecum (lowest SCFA pool) to the colon (highest SCFA pool), thus enabling to derive additional energy from less digestible dietary components. In conclusion, chinchilla diets can be supplemented with small amounts of animal protein such as fish meal and dried mealworm larvae meal.

Comparative analysis of the gut microbiota of the blue fox (Alopex lagopus) and raccoon dog (Nyctereutes procyonoides)

HypothalamicLiu H¹, Li Z², Si H¹, Zhong W³, Fan Z², Li G²

¹Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juyue Street, Changchun, 130112, Jilin, China. ²Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juyue Street, Changchun, 130112, Jilin, China.

The goal of this study is to compare the gut microbiota of domestic blue fox (Alopex lagopus) and raccoon dog (Nyctereutes procyonoides) to provide better understanding of their intestinal gut microbiota. We analyzed the structure of fecal microbes in 40 blue foxes and 40 raccoon dogs that were raised under same conditions, using high-throughput Illumina sequencing targeting the V3-V4 region of the 16S rRNA gene. In total, 295,146 sequence reads were obtained. The average number of operational taxonomical units in the two group samples was 194 to 286. Firmicutes (blue fox 73.40%, raccoon dog 46.90%) and Bacteroidetes (blue fox 21.92%, raccoon dog 44.25%) were the most abundant phyla in the gut of blue fox and raccoon dog. At the genus level, Prevotella (blue fox 16.89%, raccoon dog 36.22%), Blautia (blue fox 9.02%, raccoon dog 13.72%), and Peptostreptococcaceae_incertae_sedi (blue fox 22.41%, raccoon dog 2.84%) were commonly presented in the gut of two kinds of animal. Principal coordinates analysis showed that the microbial communities were different between blue fox and raccoon dog. The Firmicutes-to-Bacteroidetes ratio was higher in blue foxes (3:1) than in raccoon dogs (1:1). Moreover, Peptostreptococcaceae_incertae_sedi and Prevotella, were more abundant in the gut of blue fox, whereas the abundance of Prevotella and Blautia were higher in the gut of raccoon dog. In conclusion, the present study revealed the difference of the gut microbial composition between blue fox and raccoon dog under the same diet conditions.

Methods for the identification of farm escapees in feral mink (Neovison vison) populations

Pagh S¹, Pertoldi C¹,², Petersen HH¹, Jensen TH¹,², Hansen MS³, Madsen S³, Kraft DCE³, Iversen N³, Roslev P¹, Chriel M³

¹Department of Chemistry and Bioscience-Section of Biology and Environmental Science, Aalborg University, Aalborg, Denmark. ²Aalborg Zoo, Aalborg, Denmark. ³National Veterinary Institute, Technical University of Denmark, Kgs, Lyngby, Denmark. ⁴Department of Dentistry and Oral Health, University of Aarhus, Aarhus, Denmark.
In Denmark, American mink (Neovison vison) have been bred for their fur since the mid-1920s. Mink escaping from farms may supply the feral population. Often, it is of biological and management interest to separate the population of feral mink (i.e. mink caught in the wild) in two groups: 1) mink born on farms i.e., escapees, and 2) mink born in the wild. In this study, two methods were used for separating feral mink into the two groups: a) Comparison of body length of farmed mink and feral mink, and b) Presence of a biomarker (tetracycline: an oral antibiotic used on mink farms). A total of 367 wild caught mink (from the mainland of Denmark and the island of Bornholm), and 147 mink from farms, collected during the period 2014-2018, were used for the analysis of body length. For the testing of tetracycline (TC) as a biomarker, 78 mink from farms where there was knowledge about TC treatment (with or without) were examined for fluorescent markings in the canine teeth. Results from both univariate analyses and Gaussian mixture model analysis demonstrated clear divisions between the mean body length (mean ± S.E., range) of farmed males (52.1 cm ± 0.4, 48-68) and farmed females (mean 44.0 ± 0.2, 40-50), and between farmed mink and wild caught mink. Mixture analysis identified two groups within each sex of the wild caught mink, one assigned to farmed mink (born in captivity) and another group of smaller mink suspected of being born in the wild. On Bornholm, the mean (±SD, range) length of males born in the wild was 43.7cm (± 0.3, 36-57) and for females 37.5cm (± 0.3, 32-45). The mean length (±SD, range) of males born in the wild in the mainland of Denmark was 42.5cm (± 2.3, 36-46) and for females 36.1cm (± 1.0, 34-37). Among the feral mink from mainland Denmark, 28.4% of males and 21.6% of females were identified as escapees, while 0% of the males and 1% of the females were identified as escapees among the wild caught mink on Bornholm. Eight percent of mink from farms using tetracycline were false negatives, while no false positives were found among mink from farms not using TC. TC fluorescence was found in five of 217 mink caught in the wild equivalent to 22% escapees in mainland Denmark. No TC markings were found in mink caught in the wild on Bornholm. In conclusion, both methods a) the body length of mink, and b) fluorescent biomarkers in canine teeth are considered as useful tools to identifying mink that have escaped from farms.

Fig. 1. Increase in weight of breeding farm mink in Denmark from 2000 to 2017.

Fig. 2. Tooth root apex from mink with tetracycline (TC)(left) and without TC (right). Thin slices (70–100 μm) of the tooth root apex from mink under a microscope, left photo from a mink treated at least three times with tetracycline (TC) and right photo from an untreated mink. TC can be seen as bright yellow bands in the tooth cementum (arrows).

Fig. 3. Box plot of the mink body length. Length excluding the tails of farm males (FM), farmed females (FF), Bornholm wild caught males (BWCM) and females (BWCF), from samples collected from 2014–2018. Denmark mainland wild caught males (DWCM) and females (DWCF).
Features of the Femoral Proximocaudal Joint Capsule Insertion Among Canids

Lawler D1,2,3, Tangredi B2,4,5, Owens J6, Evans R2, Widga C7, Martin T8, Smith G8, Schulz K9, Kohn L9

1Center for American Archaeology, Kampsville, Illinois.
2Pacific Marine Mammal Center, Laguna Beach, California.
4Green Mountain College, Poultney, Vermont.
5Vermont Institute of Natural Sciences, Quechee, Vermont.
6Glen Ellen, California.
7Don Sungust Center for Excellence in Paleontology, East Tennessee State University Museum of Natural History, Gray, Tennessee.
8Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
9Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois.

BEHAVIOUR AND WELFARE

The History of Farm Foxes Undermines the Animal Domestication Syndrome

Lord KA1, Larson G2, Coppinger RP3, Karlsson EK4

1Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
2The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK.
3School of Cognitive Science, Hampshire College, 893 West St, Amherst, MA 01002, USA.
4Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01655, USA.

Hypothalamic transcriptome of tame and aggressive silver foxes (Vulpes vulpes) identifies gene expression differences shared across brain regions

Rosenfeld CS1,2,3,4, Hekman JP5,6, Johnson JL5, Lyu Z7, Ortega MT1,2, Joshi T4,7,8, Mao J4, Vladimirova AV9, Gulevich RG10, Kharlamova AV10, Acland GM11, Hecht EE12, Wang X13, Clark AG14, Trut LN10, Behura SK4,13, Kukekova AV5

1Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.
Understanding the social systems: Structure and temporal stability of red fox (Vulpes vulpes) groups

Dorning J1, Harris S1

1School of Biological Sciences, University of Bristol, Bristol, England, United Kingdom.

Red foxes have a highly flexible social system. Despite numerous studies worldwide, our understanding of the pattern and stability of fox social relationships remains limited. We applied social network analysis to camera trap data collected at high-quality foraging patches to examine the social structure of a population of urban red foxes. Foxes encountered a conspecific on 13% of patch visits, and had significant preferred and avoided companionships in all seasons. They also associated in communities that matched territorial space use, confirming that territories can be analysed separately to increase power without excluding too many social partners. Foxes maintained stable, long-term relationships with other territory residents, but the average longevity of relationships varied seasonally, suggesting that social connectivity, particularly between foxes from different social groups, is influenced by their annual life cycle. The probability of re-association after a given time lag was highest in spring and summer, during cub birth and rearing, and lowest in the winter mating season, when mean relationship duration was shorter. 33% of fox relationships lasted for four consecutive seasons and were probably between territory residents. 14% lasted for around 20 days and were probably between residents and visitors from adjacent territories. The majority (53%) lasted less than one day, particularly during dispersal and mating, and were probably between foxes from non-adjacent social groups. Social structure varied between groups; in one group the death of the dominant male caused significant social disruption for two seasons. This is the first application of social network analysis to multiple red fox social groups. However, our analyses were based on interactions at high quality food patches; social connections may differ when foxes are resting, travelling and foraging elsewhere in their territory. Our results will inform management practices, particularly for disease spread and population control.
Fig 1. Consistency of communities in each season and year. Edge thickness is proportional to the simple ratio index. Node shapes represent males (■) and females (●). Eig Q = maximum modularity from eigenvector community detection, AL Q = maximum modularity from average-linkage hierarchical clustering. The communities presented are from the method in bold, based on the highest modularity or the eigenvector method when modularity was the same for both methods. ¹ Q < 0.3 indicated the network could not be divided into communities so the full network is presented. The arrow indicates a male that switched communities between seasons.

Fig 2. (a) Communities 1–8 in the fox social network, excluding isolates. Node shapes represent males (■) and females (●). Line thickness is proportional to the simple ratio index (SRI). (b) Spatial profiles of communities 1—7. Colours correspond to communities in (a) and error bars indicate standard deviation.
Fig 3. Space use network with (a) colours representing communities based on daily space use overlap and (b) colours representing communities based on spatiotemporal associations, for comparison. Line thickness is proportional to the simple ratio index (SRI) based on the number of days when dyads visited the same patches. Node shapes represent males (■), females (●) and unknown sex (▲).

Fig 4. The probability that a fox identified on a given day would be the same as a randomly chosen individual at a later time (lagged identification rate, LIR) across the whole study (green circles) and the best-fitting model (red line). Error bars show bootstrap standard errors calculated over 100 replicates.
Fig 5. The probability that pairs of foxes that associated on a given day would re-associate at a later time (lagged association rate, LAR), the best-fitting exponential model and the expected association rate if associations were random (null association rate, NAR) for the whole dataset. From: Understanding the intricacy of canid social systems: Structure and temporal stability of red fox (Vulpes vulpes) groups. Vertical lines show jack-knife standard errors.

Fig 6. The probability that pairs of foxes that associated on a given day would re-associate at a later time (lagged association rate, LAR) within seasons (maximum lag = 40 days) and the expected association rate if associations were random (null association rate, NAR) calculated across all data. From: Understanding the intricacy of canid social systems: Structure and temporal stability of red fox (Vulpes vulpes) groups. Vertical lines show jack-knife standard errors.

HEALTH AND DISEASE

Development and validation of nucleic acid tests to diagnose Aleutian mink disease virus

Virtanen J¹, Aaltonen K², Vapalahti O³, Sironen T⁴

¹Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland.
²Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790, Helsinki, Finland.
Mink Aleutian disease seroprevalence in China during 1981-2017: A systematic review and meta-analysis

Gong QL1, Li D1, Diao NC1, Liu Y1, Li BY1, Tian T1, Ge GY1, Zhao B1, Song YH1, Li DL1, Leng X2, Du R3

1College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China.
2College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China.
3College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, PR China.

Epub ahead of print.
Copyright © 2019. Published by Elsevier Ltd.

Development of an EvaGreen-based real-time PCR assay for detection of Aleutian mink disease virus

Li L1, Hu Z2, Sun J3, Guo K2, Chu X2, Wang X2, Lu Y4

1Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China; Harbin Customs District P.R. China, 88 Songsan Road, Harbin 150008, PR China.
2State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China.
3State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin 150001, PR China.
4Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China.

Epub ahead of print.
Copyright © 2019. Published by Elsevier B.V.

Breeding parameters on a mink farm infected with Aleutian mink disease virus following the use of methisoprinol

Kowalczyk M1, Gąsiorek B2, Kostro K3, Borzym E3, Jakubczak A4

1Department of Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
2Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30, 20-612, Lublin, Poland.
3Department of Fish Diseases, National Veterinary Research Institute, 57 al. Partyzantów, 24-100, Puławy, Poland.
4Department of Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.

Aleutian mink disease virus is one of the greatest threats to modern mink farming. The disease reduces fecundity and causes high mortality among kits. The aim of this study was to evaluate the effectiveness of methisoprinol in counteracting the effects of Aleutian disease, both by inhibiting replication of the virus and by mitigating the harmful effects of the disease on the fecundity and weight of infected animals. The study included 300 individuals with confirmed infection,
divided according to antibody titres into three experimental groups, which received a 20% methisoprinol solution, and three control groups, which did not receive the immunostimulant. In the mink from the experimental groups, the number of copies of the genetic material of the virus in the spleens and lymph nodes was one order of magnitude lower than in the case of the control groups. Mink receiving the supplement also showed higher fecundity (on average 5.83 in the experimental groups and 4.83 in the control groups), and the weight of their offspring before slaughter was over 200 g higher. Given the lack of effective methods for immunoprophylaxis and treatment, methisoprinol supplementation can be an effective means of counteracting the effects of AMDV on persistently infected farms.

Fig. 1. Average number of copies of AMDV DNA in the spleens and lymph nodes of mink in the experimental and control groups in 1 μg of DNA. Blue, experimental group, young female offspring; red, experimental group, adult females from foundation stock; green, control, young female offspring; orange, control, adult females from foundation stock; ***, statistically significant difference

Fig. 2. Average number of kits per litter 10 days after whelping; blue, control group; red, experimental group (C1 and group 1 – control and experimental animals with antibody titre designated as +, C2 and group 2 – control and experimental animals with antibody titre designated as ++, C3 and group 3 – control and experimental animals with antibody titre designated as +++)

Abstracts

Development and evaluation of a direct TaqMan qPCR assay for the rapid detection of diverse carnivore ammodarvoviruses

Wu YH1, Wei T1, Zhang X1, Zhao YQ1, Wang JK1, Cong L1, Xu BZ1, Shao XQ1

1State Key Laboratory for Molecular Biology of Special Economic Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.

Copyright © 2019. Published by Elsevier Ltd.

Phylodynamic analysis of two amino acid substitutions in the hemagglutinin protein of canine distemper virus strains detected in fur-bearing animals in China

Tao R1, Ba H2, Chen J1, Liu M1, Pan H1, Li X1, Wang Q1, Zhao J1

1College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
2Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.

Epub ahead of print.

Viral Nonstructural Protein 1 Induces Mitochondrion-Mediated Apoptosis in Mink Enteritis Virus Infection

Lin P1,2,3, Cheng Y1, Song S1, Qiu J1, Yi L1, Cao Z1, Li J1,2,3, Cheng S1, Wang J1

1Key Laboratory of Special Animal Epidemic Disease, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.
2National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, China.
3Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, Bohai University, Jinzhou, China.
Occurrence and Genomic Characterization of Two MCR-1-Producing Escherichia coli Isolates from the Same Mink Farmer

Zheng B#1, Xu H#1, Huang C#1,2, Yu X1, Guo L1, Han H3, Zhang J1,4, Jiang X5, Chen C1, Xiao Y6

#Contributed equally

Helminths of Mustelids with Overlapping Ecological Niches: Eurasian Otter Lutra Lutra (Linnaeus, 1758), American Mink Neovison Schreber, 1777, and European Polecat Mustela Putorius Linnaeus, 1758

Nugaraitė D, Mažeika V, Paulauskas A

Acholeplasma equirhinis sp. nov. isolated from respiratory tract of horse (Equus caballus) and Mycoplasma procyoni sp. nov. isolated from oral cavity of raccoon (Procyon lotor)

Volokhov DV1, Gao Y2, Davidson MK3, Chizhikov VE

Laboratory of Method Development, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993-0002, USA.

Laboratory of Respiratory Viral Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993-0002, USA.

Center for Veterinary Medicine, U.S. Food and Drug Administration, 8401 Muirkirk Rd, Laurel, MD, 20708, USA.

Laboratory of Method Development, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993-0002, USA.

We describe two novel species of Acholeplasma sp. strain N93 and Mycoplasma sp. strain LR5794 which were isolated from the nasopharynx of a horse from the United Kingdom and from the oral cavity of a North American raccoon from Canada, respectively. These strains were phenotypically and genetically characterized and compared to other established Mycoplasma and Acholeplasma species. Both strains are facultative anaerobes, resistant to penicillin, and produce acid from glucose but do not hydrolyze arginine.
and urea. Both strains grew well in microaerophilic and anaerobic atmospheric conditions at 35-37 °C using PPLO (pleuropneumonia-like organisms) medium. Acholeplasma sp. N93 does not require serum for growth. Colonies of both strains showed a typical fried-egg appearance and transmission electron microscopy of bacterial cells revealed a typical mycoplasma cellular morphology. Molecular characterization included assessment of several genetic loci. The genetic analysis indicated that Acholeplasma sp. N93 and Mycoplasma sp. LR5794 were most closely related to A. hippikon and A. equifetale, and M. molare and M. lagogenitalium, respectively. However, both novel strains were genetically unique in comparison to other well-known Mycoplasma and Acholeplasma species. Based on the isolation source history, phenotypic, genotypic, and phylogenetic characteristics of these novel strains, we propose the name Acholeplasma equirhinis sp. nov. for Acholeplasma sp. isolated from the nasopharynx of a horse [the type strain is N93 T (= DSM 106692 T = ATCC TSD-139 T = NCTC 14351 T)], and the name Mycoplasma procyoni sp. nov. for the Mycoplasma sp. isolated from the oral cavity of a North American raccoon [the type strain is LR5794 T (= DSM 106703 T = ATCC TSD-141 T = NCTC 14309 T)].

Prevalence and Genotyping of Toxoplasma gondii Infection in Raccoon Dogs (Nyctereutes procyonoides) in Northern China

Qin SY1,2, Chu D2, Sun HT2, Wang D1, Xie LH2, Xu Y2, Li JH2, Cui DY2, You F2, Cai Y1, Jiang J3

1College of Animal Science and Technology, Jilin Agricultural University, Changchun, P.R. China. 2General Monitoring Station for Wildlife-Borne Infectious Diseases, State Forestry and Grass Administration, Liaoning Shenyang, P.R. China. 3College of Life Sciences, Changchun Sci-Tech University, Shuangyang, P.R. China.

Toxoplasma gondii is one of protozoan parasites resulting in zoonosis, which can infect nearly all of warm-blooded hosts, including humans and raccoon dogs (Nyctereutes procyonoides). However, related reports on prevalence and genetic characterization of T. gondii strains in raccoon dogs were few in China. The aim of this study was to survey the prevalence and genetic characterization of T. gondii strains in domestic raccoon dogs from Jilin, Liaoning, and Hebei provinces, northern China. During April 2016 to November 2017, a total of 337 tissue samples collected from domestic raccoon dogs were detected with B1 gene using a nested PCR. And the positive samples were genotyped at 11 genetic markers (SAG1, 5'-and 3'-SAG2, alternative SAG2, SAG3, BTUB, GRA6, L358, PK1, c22-8, c29-2, and Apico) using multilocus PCR-restriction fragment length polymorphism technology. Sixteen out of 337 sika deer (4.75%) were positive with B1 gene by nest
PCR. Furthermore, four positive DNA samples were completely typed through further being genotyped, in which three samples were identified as ToxoDB Genotype #9, and one sample was confirmed as ToxoDB Genotype #10. The results of molecular detection not only revealed the existence of *T. gondii* in domestic raccoon dogs in Jilin, Liaoning, and Hebei for the first time, but also provided the information of genetic diversity. This study also indicated that ToxoDB Genotype #9 as a kind of potential reservoir for *T. gondii* transmission, may be main genotype in domestic raccoon dogs in China, posing a risk of infection in human health.

NJF SEMINAR 505
AUTUMN MEETING IN
FUR ANIMAL RESEARCH 2018

Scandic Trianglen Hotel in Malmö
3 – 5 October 2018
BEHAVIOUR AND WELFARE SESSION

Scientific review of mink welfare in Sweden

Lena Lidfors

1Department of Animal Environment and Health, Swedish University of Agricultural Sciences, P. O. Box 234, SE-532 23 Skara, Sweden.

The Scientific Council for Animal Protection has been commissioned by the Swedish Board of Agriculture, which has been commissioned by the Government, to evaluate the animal welfare of mink in Swedish fur production and assess whether production, as it is today, means that the animals are given the opportunity to behave naturally. This means that the animals are kept and maintained in a good animal environment so that their welfare is promoted and that they can perform such behaviours that they are strongly motivated for and which are important to their well-being and that behavioural disorders are prevented.

Mink raised for fur production in Sweden must be kept and managed in accordance with a constitution (SVIFS 2012: 14), which entered into force on 1 July 2012 and a regulation for the holding of mink (SVIFS 2013: 16 Issue No L 103), which was adopted on June 5 2013 and meant that changes would be made immediately or until January 1 2017. These regulations were developed after careful analysis of the scientific literature and after contact with external researchers. This report to the Swedish Board of Agricultural compiles the most relevant research, both older and newer, and attempts to link knowledge about the natural behaviour of mink, its domestication and breeding, how the mink are kept, managed and fed, and their health and diseases to the welfare of mink. In addition to complying with animal welfare rules, the industry itself has developed a welfare program (most of which is linked to the Swedish farms), and in the EU, these farms also undergo welfare checks through the “FurEurope” program (WelFur).

Everyone working with mink in Sweden must have completed a course of at least 30 hours followed by a test, and in order to be responsible for the killing of mink, further education and examination are required.

The compilation of international research and the description of how minks are kept and managed in Sweden today, after the new rules have been introduced, indicate that the production is managed so that the animals are given good opportunities to behave naturally. Mink can, through the new rules, perform such behaviours as they are strongly motivated for and which are important to their well-being. Behavioural disorders are prevented by giving mink ad libitum access to feed, keeping them in climbing cages with two shelves, providing them straw for nest building, feeding and occupation, and giving them at least two enrichments which are replaced regularly. In Sweden mink has always had ad libitum access to a nest, which is one of the most important resources. Drinking water is given ad libitum in frost-free drinking nipples, but the industry might consider to also providing water outside the nest for kits and the female from 3-4 weeks after the kits are born. Water in a larger bath is considered a powerful enrichment, but not a behavioural need, and health of the mink may be compromised. There are some areas where the management of the mink could be improved, for example avoid breeding on larger size of the mink, which may cause housing and management problems in the future. More knowledge is therefore required in several areas.

Cross fostering in mink: Time after birth influence maternal behaviour and offspring growth

Jens Malmkvist

1Aarhus University, Dept. of Animal Science, 8830 Tjele, Denmark.

Only few systematic studies focus on cross fostering of mink offspring and levelling of litters early in life. Methods: 408 transponder marked kits were transferred from large litters (9-14 kits) to foster mothers (N=408, 4-7 kit per litter) on either Day 2 (N = 201) or Day 6 (N=207) relative to the day of birth (Day 0). Besides timing of transfer, the foster mother age class (young: 1st parity, old: 2nd-3rd parity) was a factor in the study. The transferred kits were 50% male and 50% female.

Results: Mink mothers retrieved the novel kit quicker to the nest at Day 2 than at Day 6. The offspring body-weight (Day 56) was higher after transfer at Day 2 than at Day 6. Young and old dams displayed an equal acceptance of the foster kit, but the growth of kits was significantly better in litters nursed by the experienced, older dams. Foster kits had a higher risk of dying (15.8 % vs. 11.4 % for the biological kits in the receiving litter) until Day 56. The mortality of foster kits was not different from that in a group of intact control litters with 8-14 kits. There was a strong influence of off-spring sex on the amount of damages observed around Day 49. Out of the 2516 examined kits in receiver litters, 6.8% of the males and 46.1% of the females, had some sort of a damage (primarily scrust/wounds on the
side of the neck), scored in different intensities from 1-5. Litters of young dams receiving a novel kit Day 2 scored significantly worse on total damage in the litter, than the young dams receiving a novel kit Day 6 and the older dams. Conclusion: It is recommended to transfer mink kits early (within the first days) after birth and to choose old rather than young dams as receiver of foster kits.

Extra water for kits and ad-libitum feed for mink dams also benefit mink on private farms, but effects differ from research

Steen H. Møller¹, Britt I.F. Henriksen¹
¹Department of Animal Science, Aarhus University, 8830 Tjele, Denmark.

Research at Aarhus University’s mink farm has shown a better development of mammary gland tissue in mink dams if they are fed ad libitum after birth, rather than more restricted, although the effects differ somewhat between first year dams (Pinkalski & Møller, 2014) and older dams (Møller et al., 2015).

For many years it has been known that mink kits as well as dams benefit from easier access to the standard drinking water supply, and that it helps the kits to drink earlier which reduce saliva licking and makes them grow faster (Møller & Lohi, 1989; Møller, 1991). Recently it has been shown that additional water for mink kits close to the next box helps the kits to drink up to eleven days earlier which increases the positive effects on growth, wounds and weight development (e.g. Hansen et al., 2015; Jespersen et al., 2014; Malmkvist et al., 2016; Clausen & Larsen 2013).

In order to test if the effects would be the same in practice, we applied ad libitum feeding compared to more restricted feeding after birth, and an additional water nipple just outside the nest box in large scale on 4 private farms. We hereby present the results, that was primarily expected in the period from 28 days to weaning. The main purpose was to test to what degree results from research farms, can be found under the very varying management routines found on private farms.

Searching for optimal wintering conditions for young Finnraccoon females

Tarja Koistinen¹, Juhani Sepponen¹, Sini Raatikainen², Hannu T. Korhonen¹
¹Natural Resources Institute Finland (Luke), Production Systems.
²University of Eastern Finland, Department of Biology and Environmental Sciences.

The aim of the present study was to document the wintering behaviour of young Finnraccoon females (Nyc-tereutes procyonoides). Females were raised alone in two different size cages, alone in the larger cage with access to a winter nest and in pair in the larger cage through their first winter. The results show that the housing conditions affect the resting behaviour; the females having access to a winter nest rest almost solely inside the nest, while the females housed in pair allo-huddle. The females without these resting options rest on the cage floor and to a lesser extent on the ordinary platform. The Finnraccoons with access to a winter nest are less active than others, but do not show true superficial hibernation. The level of stereotypic behaviour remains low throughout the winter. Based on the present results young Finnraccoons are recommended to be raised in social housing units or with access to nest box in winter, in order to secure comfort resting behaviour.
Science-based animal welfare in the European fur sector

Jyrki Sura - Head of Welfur, Fur Europe
WelFur in Practice

- 22/25 measurements
- 12 criteria & principles
- 1 overall score
- Period: 3 months
- Period: 1 year
- Period: 2 years
- Period: 3 periods

3 x ASSESSMENTS (per period)

Methodological computer evaluation of data

- WelFur Certification
- No Certification (supplying of international auction houses)
- FARM SCORE: Industry Standards
- Objective documentation of animal welfare standards
- Consumer transparency
- Tool to improve animal welfare

European Consumer Behavior

- 59% are willing to pay more for products stemming from animal productions with high animal welfare
- 52% look for animal welfare certificates when buying products
- 47% find the selection of animal welfare-friendly products in retail stores and super markets inadequate – up 9% since 2006 (Eurobarometer 2016)

Fashion Houses Drive Sustainability Forward

- Global fashion brands are increasingly concerned about the origin of their raw materials
- Top fashion houses have shown interest in WelFur from the beginning
- The European fur sector is in dialogue with these brands through a luxury round table

Traceability Trends

- Certification and traceability is going to grow as a sales parameter in the future
- Some consumers will buy fur only because it will be possible to buy from certified farms
- It is quite possible that WelFur directly will expand the number of potential fur buyers

WelFur Status 2018

- 98% of European mink and fox farmers have signed up for the programme
- Also farms in North America are signing in
- First European farms will be WelFur certified in December 2018
- The European Commission has highlighted WelFur as a best practice example of animal welfare assessment
- Several European countries have shown interest in including WelFur in national animal welfare legislation
Iron supplementation to mink kits at day three after birth

Karoline Blaabjerg¹, Tove N. Clausen¹, Rikke Brodsgaard Kjærup², Ida Bylov Steensgaard² & Peter Foged Larsen¹

¹Kopenhagen Fur Research, ²Department of Animal Science, Aarhus University.

Iron (Fe) plays an important role in growth and hemoglobin formation. After birth and until mink kits begin to ingest solid feed, the hemoglobin level diminishes indicating that mink kits in this period are likely to suffer from iron deficiency (anemia). Therefore, the purpose of this experiment was to investigate the effect of injecting mink kits with iron day 3 after birth on hemoglobin and hematocrit levels and content of iron in the liver as well as growth. The experiment showed that injection with 2 mg iron day 3 after birth resulted in a significant increase in hemoglobin and hematocrit day 18 but not day 39 and 58 after birth. Injection with iron also caused an increase in the iron content of the liver day 18 but had no effect on growth day 18, 39 and 58. The injected iron dose corresponded to the dose per gram of body weight used as a standard for suckling pigs day 3 after birth to prevent anemia. However, mink kits have a relatively higher growth rate compared with suckling pigs. Consequently, the used iron dose per gram of growth was considerably less for the mink kits compared with suckling pigs. This probably explains the lack of effect of iron on growth and hemoglobin and hematocrit day 39 and 58. However, further experiments with higher iron doses are required to confirm this. If future experiments with a higher iron dose show similar positive effects on growth and survival of mink kits, as the right iron dose has been shown to have in suckling pigs, it will contribute to increased productivity and thereby improve the competitiveness of the mink breeders.

The need of vitamin supplementation in female mink during the winter period

Soren K. Jensen¹, Mette S. Hedemann¹, Peter F. Larsen² & Tove N. Clausen²

¹Department of Animal Science, Aarhus University ²Kopenhagen Forskning

This investigation showed that the reserves of the fat soluble vitamins in general was high enough to counteract the lower intake caused by the change in body condition management during the winter period. For the water soluble vitamins the investigation showed that riboflavin, niacin, pantothenic acid and pyridoxal can be reduced in the winter period, whereas low excretion of these vitamins from the kits during the lactation period indicate that supplementation most likely is needed.
weight data collected in the new Furapps, increasing the knowledge and quality of the recommended weight loss during winter and weight gain until parturition.

Effect of feed energy and protein level on performance in blue fox (Vulpes lagopus) in late growing-furring period.

Vappu Ylinen¹, Maarit Mofaibes², Jussi Peura³, Tor Mikael Lassén⁴, Jarmo Valaja¹

¹Department of Agricultural Sciences, University of Helsinki, Finland
²Kannus Research Farm Luova Ltd., Kannus, Finland
³Finnish Fur Breeders Association, Vantaa, Finland
⁴Lassén Feed Consult

Effect of feed energy and protein level on growth and pelt characteristics was studied with 60 blue fox males in late growing-furring period from mid-October until pelting. Experimental groups were “high energy—high protein” (HE-HP), “high energy—low protein” (HE-LP), “low energy—high protein” (LE-HP) and “low energy—low protein” (LE-LP). Feed intake, body weight and weight gain, body condition score (BCS), body mass index (BMI), pelt size, pelt quality and incidence of watery faeces were observed as performance indicators. Blue foxes fed with high-energy feeds had higher body weight (p=0.0002), ADG (p<0.0001) and BMI (p=0.002) at pelting. Pelt size, pelt quality, feed intake and BCS were not affected by the treatments. Watery faeces and reduced voluntary feed intake (loss of appetite, unwillingness to eat) were not found.

Effect of tetradecylthioacetic acid (TTA) on body fat deposition in silver foxes (Vulpes vulpes)

Øystein Ahlstrøm¹, Rolf K. Berge², Bodil Bjørndal², Xue Chen¹

¹Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
²Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Norway.

Tetradecylthioacetic acid (TTA) is an artificially produced fatty acid with a sulphur atom replacing the third methyl group from the carboxyl end. In animal studies, TTA has increased mitochondrial β-oxidation and reduced body weight gain and body fat deposition in rats. In foxes, dietary TTA supplementation might be beneficial for reducing body fat as preparation for the reproduction period.

The study were carried with silver fox males cubs in the autumn period (Sept-Dec) applying 0 (control), 1.2g TTA and 4.8 g TTA/kg feed with seven animals in each group. The TTA levels were based on a feed intake of approximately 250 g dry matter/animal/day, corresponding to 50 mg and 200 mg/ kg body weight per day with a six kg animal for the 1.2 g and 4.8 g TTA group, respectively.

The study showed that the two levels of dietary tetradecylthioacetic acid (TTA) supplementation did not produce clear effects on body fat deposition in growing silver foxes. The 4.8 g/kg level reduced feed consumption, which produced significant reduced body weight gain. There was no significant difference in kidney fat with the 1.2 g TTA level compared to control group, but the highly significant correlation between body weight and kidney fat suggested that, reduced ME intake was the main factor causing reduced kidney fat, irrespective of TTA supplementation. TTA did not reduce fat digestibility.

The effect of biochar-peat mixture on the odour from mink manure

Maarit Hellstedt¹

¹Natural Resources Institute Finland.

Gaseous emissions from fur manure cause local nuisance as well as leakage in the nutrient cycles of agriculture. Cover materials can be used during the storage of manure to reduce both the odour problem and to tighten the nutrient cycles. The use of biochar-peat mixtures to reduce odour was tested in a small-scale laboratory study.

The results show that a biochar-peat covering of at least 3 cm is able to considerably reduce the odour from the fur manure. New covering material should be spread every week to keep the effect on an acceptable level. During cold periods as the temperature of the manure is near zero the odour level is quite low and no covering is needed.
BREEDING AND GENETICS SESSION

Implementation of body mass index (BMI) for Finnish blue fox

Jussi Peura1

1Finnish Fur Breeders Association (Profur) / SLU Department of Animal Breeding and Genetics, Box 7023, S-750 07 Uppsala, Sweden.

This article is a case report on the development and implementation of body mass index (BMI) for the Finnish blue fox certification system. BMI has been shown to be an objective and effective measurement to evaluate the level of fatness of blue foxes during autumn before pelting. BMI was developed as part of a residual feed intake project during autumn-spring 2017-2018 and it was tested during autumn 2017. At the beginning of summer 2018 Profur implemented it into the Finnish fur certification system and first certification auditions will start in autumn 2018.

VETERINARY AND PATHOLOGY SESSION

Parvoviruses of mink and fox – molecular epidemiology and prevention

Tarja Sironen1,2, Anna-Maria Moisander-Jylhi2, Jenni Virtanen1, Kirs Aaltonen2, Olli Vapalahti1,2

1University of Helsinki, Medicum, Department of Virology.
2University of Helsinki, Department of Veterinary Biosciences.

Many mustelid and other carnivore species harbor closely related parvoviruses, some of which cause severe disease in the host species. Parvovirus infections of production animals are the most significant cause of enteritis leading both to animal welfare problems and economic losses. To prevent these infections, vaccines have been developed and are in use, however, the vaccines are not always up to date and the vaccination schedules and dosage may be unoptimized. Mink (Neovison vison), foxes (Vulpes lagopus) and finnraccoons (Nyctereutes procyonoides) can all be vaccinated using a mink enteritis virus - vaccine, however, the level of protection is not the same for the different animal species. The recent discovery of new parvoviruses calls for re-assessment of the current vaccination schemes.

We studied the molecular epidemiology of parvoviruses infecting Finnish fur animals. Samples obtained from mink and foxes revealed the presence of similar, yet not identical parvovirus variants. Based on these observations, a novel vaccine candidate was developed specifically for fox parvovirus. Antibody responses elicited by the candidate vaccine, and the currently used MEY-vaccine were compared, and the results support the continued development and testing of the candidate fox parvovirus vaccine. The technique for vaccine production used in this study will also enable vaccine producers to easily update the vaccine, if new strains or variants are detected in the animal population. We have further studied the presence and titers of maternal antibodies relative to age of the pups and hope to have new recommendations on the vaccination scheme to maximize the effectiveness of the vaccine.

Preliminary results of clinical and gross pathological studies of cystitis and urolithiasis in farm mink (Neovison vison)

Karin Mundbjerg1,2, Tove Clausen3, Oliver Lykke Hønør2, Morten Thorstensen3, Caroline Berner2, Ida Sebbelov4 and Anne Sofie Hammer2

1LVK Dyrlägerne A/S.
2Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
3Kopenhagen Farm, Denmark.
4Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark.

The objective of this study was to evaluate urine sample analysis and specific blood parameters as predictors of gross lesions in the urinary tract of farm mink kits with cystitis and urolithiasis. Urine samples (n=240) were collected by spontaneous micturition. Based on urine analysis data two case groups (n=18/14) and one control group (n=12) of animals were selected. The case and control animals were euthanized and examined by necropsy. Lesions associated with cystitis and urolithiasis were recorded. Gross pathological findings were recorded in 7 animals. 6 of these were case animals identified by presence of struvite crystals in combination with erythrocytes, pH > 6.6, discolored urine and/or positive nitrite. No gross pathological findings were found in the control animals. In conclusion, urine analysis appeared to be a useful method for the identification of mink kits with gross lesions in the urinary tract. The results indicate that urine color, nitrite, pH and the presence of struvite crystals should be evaluated in combination.
POSTER SESSION

Is fur-chewing associated with ‘coping style’ and reproductive performance in blue fox vixens?

Jaakko Mononen1 and Tarja Koistinen1

1Natural Resources Institute Finland (Luke), Production systems.

The prevalence of fur-chewing in farmed blue foxes peaks in winter, ranging then on Finnish farms from 0 to 30% of the animals. However, there are few studies on fur-chewing in blue foxes. In our pilot study, we examined the relationships between fur-chewing, behaviour in three behavioural tests reflecting foxes’ ‘coping style’ and reproductive performance. The study population was 551 blue fox vixens (271 primiparous and 280 multiparous) of one commercial Finnish fur farm. The fur-chewing status was assessed and behavioural tests were carried out in early March 2017. The prevalence of fur-chewing was 36%. The reproductive performance data were collected in June-July 2017. The age class of the vixen was as a confounding factor in all the statistical models (Logistic Regression and Poisson Regression). Fur-chewing was more frequent in the blue foxes with a proactive ‘coping style’: eating in the presence of a man in the Feeding Test (only multiparous foxes), being explorative in the Stick Test, and approaching the assessor and showing no fear reactions in Subjective Evaluation of Human-animal relationship. There was no statistically significant association between fur-chewing and whether a vixen succeeded to reproduce or not. Instead, vixens with a proactive ‘coping style’ and fur-chewing tended to have larger litters than vixens with only one or none of these features. Our preliminary results indicate that fur-chewing is probably a part of a proactive coping mechanism in blue foxes. This does not necessarily invalidate fur chewing as an indicator of insufficient housing environment, since there may be individuals who do not have the disposition to develop this abnormal but putatively stress relieving behaviour. Altogether, further studies on several farms are needed to clarify the causation and mechanisms of development of fur-chewing in blue foxes, as well as its relationship to the welfare of the animals.

How to improve the outcome of the animal protection inspections on Finnish fur farms?

Tarja Koistinen1, Hanna T. Korhonen2, Petra Tuunanen1, Jaakko Mononen1, Sari Salminen3

1Natural Resources Institute Finland (Luke) Maaninka. 2Kokkola. 3Finnish Food Safety Authority (Evira) Helsinki.

Regional State Administrative Agencies carry out the annual animal protection inspections on fox, mink and Finnraccoon farms selected by Finnish Food Safety Authority (Evira). Most of the inspected farms are selected by targeted criteria and about one fourth of them randomly. The aim of our project is to clarify the main violations of the regulations on Finnish fur farms and, together with the industry, find out solutions how to improve the inspection outcomes. The annual animal welfare reports of Evira and detailed inspection reports by the veterinarians from the years 2010 to 2016 were carefully examined for recognizing the challenges with national and European regulations. During this period, a total of 236 inspections were done. Violations were not found in 108 cases, and violations were found in 128 cases. However, a total of 378 separate violations were registered, because there were typically several violations in one farm. Only in one case urgent measures were required. The violations were mostly related to outworn or broken cages, lack of enrichments (e.g. activity object, platform, bedding material) and indifferent attitude towards medication, euthanasia and mortality records. Typically, there were no challenges with feeding and watering. No violations were found in the general conditions of the farm, such as lightning and noise. Various ways of further educating the farmers and facilitating management of the farm have been implemented in the project, including giving lectures, spreading information through various channels, making education videos and developing processes. However, the challenge seems to be how to reach the multi-problematic and indifferent farmers, instead of the already active and responsible farmers. We are still looking for ideas, also from the neighboring countries, how to better educate and motivate the farmers to follow the national and European regulations accurately and improve animal welfare in other ways.
Detection of the Heat-related Odors in Blue Fox Vixens by Trained Dog – a Pilot Study

Ojala, Eeva¹

¹Kannus Research Farm Luova Ltd.

One crossbred dog was trained to detect and respond to heat odors of blue fox vixens. The performance of the dog was tested on insemination season during 13 testing days between 19th March and 11th April 2018. The dog was able to detect an average of 76.1% of the vixens that were on heat on testing days. The results of the experiment indicate that a specific odor is associated with the heat of blue fox vixens and a trained dog is able to detect the odor.

Additional water for mink kits and a netting insert in the nest box can reduce kit loss in the nursing period

Britt I.F. Henriksen¹, Jens Malmkvist¹ and Steen H. Møller¹

¹Aarhus University, Dept. of Animal Science, Tjele, Denmark

We tested the hypotheses that: 1) the product Easy-strø complete (Easy-AgriCare) will reduce kit mortality compared with straw as bedding material in the nest box, 2) a netting insert will reduce kit mortality in nest boxes of plywood, and 3) an additional water nipple (Hedensted-Gruppen) for mink kits positioned at the nest box entry will decrease the prevalence of kits with injuries, 4) an additional water nipple will mask positive effect of early partial weaning of litters with more than five kits. The different management procedures and products (easy-strø complete, netting insert, additional water for kits, partial weaning of litters of 6 or more kits at six weeks) were tested on two private mink farms in the nursing period, to evaluate their effect on kit mortality and welfare. The odds of kit mortality from day 1 to 28 were higher in nest boxes with a netting insert and with easy-strø complete as bedding material, compared to netting insert with straw. Nest of straw were also scored thicker and higher compared with easy-strø complete. With straw as bedding material, a netting insert reduced the odds of kit mortality from day 1 to 28, compared with no netting insert, while a netting insert, independent of bedding material, reduced the odds of injuries at day 49 on one of the farms. The odds of kit mortality from day 28 to weaning in litters with more than five kits were lower with additional water for kits near the nest box opening. We conclude that providing access to a water nipple close to the kits nests, and a netting insert together with straw as bedding material in nest boxes of plywood, is positive for the mink kits welfare, with reduced kit loss and less injuries.

Characterization of Escherichia coli isolates from healthy and diseased mink

J. de Rond¹, J. Wiegel¹, R.J. Molenaar¹

¹GD Animal Health, P.O. Box 9, 7400 AA Deventer.

Escherichia coli-related disease problems are of major economic concern for the mink industry (Tibbetts, White et al. 2003) but there is a notable lack of information about the characteristics of the strains that cause disease in mink. In this study, E. coli isolates from diseased mink are tested for the presence of gene sequences associated with virulence, resistance or other properties and compared to E. coli, isolated from gut contents of healthy mink (commensal). As mink are often fed with uncooked meat products originating from poultry, the disease-associated E. coli are also compared to disease-associated E. coli from contents of chickens.
SCIENTIFIC ARTICLES. Papers submitted for publication as scientific articles are received with the understanding that the work has not been published before, and is not considered for publication elsewhere and has been read and approved by all authors. In regard to forwarded articles the author(s) alone is (are) responsible for the scientific content of the article. Experimental methods used and reported in SCIENTIFUR shall meet ethical standards of animal treatment.

MANUSCRIPTS
Manuscripts must be sent by e-mail, preferably in Microsoft Word. The material should be sent to: E-mail: Scientifur@dca.au.dk. In case of no access to e-mail, manuscripts can be forwarded to: SCIENTIFUR, Danish Centre for Food and Agriculture, Aarhus University, P.O. Box 14, DK-8830 Tjele, Denmark

Manuscripts must be written in English, typed with double spacing and with page and line numbering and consisting of:

Title, which should be concise and informative, but as short as possible, and contain the main key words.

Authors name(s) as well as name(s) and address(es) of the institutions to which the work is attributed. E-mail address of the corresponding author should be given.

Summary/Abstract.

Keywords in alphabetic order if not included in the title.

Text. The text should normally be divided into: Introduction, Material and Methods, Results, Discussion, Acknowledgements and References and follow internationally accepted rules. Double documentation in both figures and tables will not be accepted.

Illustrations. All graphs, photos and pictures are considered as figures. All drawings have to be professionally drafted (photocopies are not an acceptable standard). The illustrations should be JPG-, GIF- or TIF-files. Any halftones must exhibit high contrast and text and other details must be large enough to retain the readability even after reduction of figure size to single column (width 80 mm). The width of 170 mm can also be accepted. Colour illustrations can be included in SCIENTIFUR.

Tables. Each table should be typed on a separate page. Tables must be numbered consecutively with Arabic numerals, and have a self-explanatory title. Tables should be planned to fit a final width of 80 or 170 mm.

References. References in the text should be made according to the following examples:

The list of references should be arranged in alphabetic order according to the name of the first author and the year of publication within the names. The year of publication should be written between the name(s) and the title:
