SCIENTIFUR scientific information for those involved in fur animal production is published by the International Fur Animal Scientific Association (IFASA).

SCIENTIFUR is the focal point for fur animal researchers all over the world and serves as a platform for scientific and other communication among researchers and others who are interested in the production of fur bearing animals. As such **SCIENTIFUR** contains reports of both basic and applied research as well as abstracts of publications published elsewhere and information regarding congresses, scientific meetings etc. A reference in Scientifur does not imply an endorsement by IFASA of the content, views or conclusions expressed.

SCIENTIFUR is published as four issues per year (one volume).

SCIENTIFIC ARTICLES. Papers forwarded can be published in Scientifur. The scientific content of the article is the sole responsibility of the author(s)

EDITOR’S ADDRESS. Articles for publication in SCIENTIFUR have to be forwarded to the Editor:

Vivi Hunnicke Nielsen
SCIENTIFUR
P.O Box 14
DK-8830 Tjele, Denmark
Tel: +45 2219 1351
E-mail: Scientifur@dca.au.dk

SUBSCRIPTION: Free of charge: http://www.ifasanet.org

TREASURER’S ADDRESS. Correspondence to the Treasurer should be addressed to:

Steen H. Møller
IFASA
P.O. Box 14
DK-8830 Tjele, Denmark
Tel: +45 8715 7926
Fax: +45 8715 4249
E-mail: IFASA@anis.au.dk

INDEXING: Titles that have been published in SCIENTIFUR are covered in an electronic SCIENTIFUR INDEX.

Regional Scientifur Representatives
- Finland: Dr. Tarja Koistinen: E-mail: tarja.koistinen@luke.fi
- Iceland: Advisor Einar Einarsson: E-mail: einare@krokur.is
- Poland: Dr. Robert Głogowski: E-mail: robert_glogowski@sggw.pl
- USA: Dr. Jack Rose: E-mail: roseeill@isu.edu

International Fur Animal Scientific Association (IFASA). Board of directors:
- Dr. Steen H. Møller (President, Treasurer): E-mail: IFASA@anis.au.dk
- Dr. Bruce D. Murphy (Vice President): E-mail: murphyb@MEDVET.Umontreal.CA
- Mr. John Papsø: E-mail: jpa@kopenhagenfur.com
- Jussi Peura: E-mail: jussi.peura@profur.fi /jussi.peura@slu.se
- Dr. Marian Brzozowski: E-mail: brzozowskim@delta.sggw.waw.pl

ISSN: 2445-6292
1. Contents

2. Notes

3. Abstracts

BREEDING, GENETICS AND REPRODUCTION

Combined analysis of group recorded feed intake and individually recorded body weight and litter size in mink

Madsen MD, Villumsen TM, Hansen BK, Möller SH, Jensen J, Shirali M

Linkage disequilibrium, effective population size and genomic inbreeding rates in American mink using genotyping-by-sequencing data

Karimi K, Farid HA, Sargolzaei M, Myles S, Miar Y

Pantothenic acid promotes dermal papilla cell proliferation in hair follicles of American minks via inhibitor of DNA binding 3/notch signaling pathway

Estradiol and progesterone affect enzymes but not glucose consumption in a mink uterine cell line (GMMe)

Holmlund H, Marin-Hernandez A, Chase JR
First assessment of hoary fox (*Lycalopex vetulus*) seasonal ovarian cyclicity by non-invasive hormonal monitoring technique
Zaninas de Candeias I, da Motta Lima CF, Gemesio Lemos F, Spercossi KM, Alvarenga de Oliveira C, Songasen N, de Borros Vaz Guimaraes MA

Administration of aromatase inhibitor MPV-2213ad to blue fox vixens (*Vulpes lagopus*) as a model for contraception in female dogs
Lindh L, Lindeberg H, Banting A, Banting S, Sainmaa S, Beasley S, Korhonen HT, Peltoniemi OAT

BEHAVIOUR AND WELFARE

Machine learning goes wild: using data from captive individuals to infer wildlife behaviours
Rast W, Kimmig SE, Giese L, Berger A

Are there metacognitivists in the fox hole? A preliminary test of information seeking in an arctic fox (*Vulpes lagopus*)
Eaton T, Billette P, Vonk J

NUTRITION, FEEDING AND MANAGEMENT

The vomeronasal organ of wild canids: the fox (*Vulpes vulpes*) as a model
Ortiz-Leal I, Torres MV, Villamayor PR, Lopez-Beceiro A, Sanchez-Quinteiro P

Computed tomography and cross-sectional anatomy of the head in the red fox (*Vulpes vulpes*)
Mahdy MAA, Zayed M

HEALTH AND DISEASE

Coronavirus rips through Dutch mink farms, triggering culls
Enserink M

SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020

Epidemiological analysis of arcanobacterium phocae isolated from cases of mink dermatitis of a single farm

Molecular evidence for vaccine-induced canine distemper virus and canine adenovirus 2 coinfection in a Fennec fox
Tamukai K, Minami S, Kurihara R, Shimoda H, Mitsui I, Maeda K, Une Y

Spread of LA-MRSA CC398 in Danish mink (*Neovison vison*) and mink farm workers

Characterization and complete genome analysis of Pseudomonas Aeruginosa Bacteriophage vB_PaeP_LP14 belonging to genus litunavirus
Comparison of Streptococcus Halichoeri isolates from canine and fur animal infections: biochemical patterns, molecular characteristics and genetic relatedness

Urolithiasis and cystitis associated with staphylococcus delphini group A and mortality in post-weaning mink kits (Neovison vison)

Update on diseases in chinchillas: 2013-2019
Martel A, Donnelly T, Mans C
The Corona virus leading to COVID-19 originated most likely in bats, from where it was transmitted to another mammal, and from there to humans. Similar zoonotic patterns were observed for the Corona virus that led to SARS in 2003 in China, and MERS in 2012 in the Middle East. Historically, many infectious diseases (zoonosis) in humans similarly originated in animals including domestic livestock.

Mink have become a part of the COVID-19 pandemic issue. Outbreaks, first observed in mink farms in the Netherlands in April 2020, are caused by zoonosis in reverse with the transmission of virus from humans to mink. The infection has then spread from mink back to humans and two farm workers in the Netherlands have been infected. On mink farms, infections seem to spread among mink through droplets, feed, bedding or dust. Study of the virus as it spreads through the populations reveals many new mutations, but these mutations seem not to result in increased virulence. It was also shown that the virus can infect other animals including cats and dogs. Feral cats were found to be infected probably through the feed.

In Denmark, three farms have been infected. Mink on these farms have been killed on precautionary principle. Subsequently, mink on 125 farms have been tested for COVID-19. None of these farms were infected. Precautions such as frequent screening of the farms, orders to farm workers to use protective equipment and guidelines for hygiene for everyone who comes to mink farms will be introduced to keep COVID-19 in mink herds at a minimum. These precautions mean that mink on infected farms are no longer required to be killed.

The experience with COVID-19 emphasizes the importance of extreme caution in livestock production. Extensive precautions have to be taken to limit the possibility of infections of herds, e.g. from wild animals. Conditions on farms need to ensure a limited spread of possible infections, and working conditions for farm workers have to minimize the risk of infections from both animals to humans and from humans to animals.

The XII International Scientific Congress in Fur Animal Production should have been held in Warsaw in Poland from 25 to 27 August 2020 in collaboration between the International Fur Animal Scientific Association (IFASA) and the Polish Society of Animal Production (PSAP). However, due to the COVID-19 pandemic the congress has been postponed to 24-26 August 2021. For further information, please consult: https://ifasa2020.pl/. The IFASA Congress is an important forum for researchers in fur animal production to gather to present and discuss recent research and outline research to address future challenges. An interesting and well-attended congress is foreseen in 2021.

Vivi Hunnicke Nielsen
Editor Scientifur
BREEDING, GENETICS AND REPRODUCTION

Combined analysis of group recorded feed intake and individually recorded body weight and litter size in mink

Madsen MD1, Villumsen TM1, Hansen BK2, Møller SH3, Jensen J1, Shirali M1

1Department of Molecular Biology and Genetics, Aarhus University, 8830Tjele, Denmark.
2KopenhagenFur Consulting, Agro Foodpark 15, 8200Aarhus, Denmark.
3Department of Animal Science, Aarhus University, 8830Tjele, Denmark.

In the mink industry, feed costs are the largest variable expense and breeding for feed efficient animals is warranted. Implementation of selection for feed efficiency must consider the relationships between feed efficiency and the current selection traits BW and litter size. Often, feed intake (FI) is recorded on a cage with a male and a female and there is sexual dimorphism that needs to be accounted for. Study aims were to (1) model group recorded FI accounting for sexual dimorphism, (2) derive genetic residual feed intake (RFI) as a measure of feed efficiency, (3) examine the relationship between feed efficiency and BW in males (BWM) and females (BWF) and litter size at day 21 after whelping (LS21) and (4) investigate direct and correlated response to selection on each trait of interest. Feed intake records from 9574 cages, BW records on 16 782 males and 16 875 females and LS21 records on 6446 yearling females were used for analysis. Genetic parameters for FI, BWM, BWF and LS21 were obtained using a multivariate animal model, yielding sex-specific additive genetic variances for FI and BW to account for sexual dimorphism. The analysis was performed in a Bayesian setting using Gibbs sampling, and genetic RFI was obtained from the conditional distribution of FI given BW using genetic regression coefficients. Responses to single trait selection were defined as the posterior distribution of genetic superiority of the top 10% of animals after conditioning on the genetic trends. The heritabilities ranged from 0.13 for RFI in females and LS21 to 0.59 for BWF. Genetic correlations between BW in both sexes and LS21 and FI in both sexes were unfavorable, and single trait selection on BW in either sex showed increased FI in both sexes and reduced litter size. Due to the definition of RFI and high genetic correlation between BWM and BWF, selection on RFI did not significantly alter BW. In addition, selection on RFI in either sex did not affect LS21. Genetic correlation between sexes for FI and BW was high but significantly lower than unity. The high correlations across sex allowed for selection on standardized averages of animals' breeding values (BVs) for RFI, FI and BW, which yielded selection responses approximately equal to the responses obtained using the sex-specific BVs. The results illustrate the possibility of selecting against RFI in mink with no negative effects on BW and litter size.

Doi: 10.1017/S1751731120000762.
Online ahead of print.

Linkage Disequilibrium, Effective Population Size and Genomic Inbreeding Rates in American Mink Using Genotyping-by-Sequencing Data

Karimi K1, Farid HA1, Sargolzaei M2-3, Myles S4, Miar Y1

1Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
2Department of Pathobiology, University of Guelph, Guelph, ON, Canada.
3Select Sires Inc., Plain City, OH, United States.
4Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada.

Pantothenic Acid Promotes Dermal Papilla Cell Proliferation in Hair Follicles of American Minks via Inhibitor of DNA Binding 3/Notch Signaling Pathway

Wang Z1, Nan W1, Si H1, Wang S2, Zhang H3, Li G4

1Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, People's Republic of China.
2Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, People's Republic of China.
3College of Animal Science and Technology, Hebei Normal University of Science and Technology,
Estradiol and Progesterone Affect Enzymes but Not Glucose Consumption in a Mink Uterine Cell Line (GMMe)

Holmlund H1, Marín-Hernández A2, Chase JR1

1Northwest Nazarene University, 623 S. University Blvd, Nampa, ID 83686, U.S.A. 2Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City 14080, México.

First Assessment of Hoary Fox (Lycalopex vetulus) Seasonal Ovarian Cyclicity by Non-Invasive Hormonal Monitoring Technique

Zanini das Candeias I1,2, da Motta Lima CF1,3, Gomesio Lemos F4,4, Spercoski KM4, Alvarenga de Oliveira C5, Nucharin Songsasen6, de Barros Vaz Guimarães MA2

1Programa de Conservação Mamíferos do Cerrado, Goiás 75704 020, Brasil. 2Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508 270, Brasil. 3Fundação Parque Zoológico de São Paulo, São Paulo 04301 002, Brasil. 4Departamento de Ciências Biológicas, Unidade Acadêmica Especial de Biotecnologia, Universidade Federal de Goiás / Regional Catalão, Goiás 75704 020, Brasil. 5Departamento de Ciências Biológicas, Setor Palotina, Universidade Federal do Paraná, Paraná 85950 000, Brasil. 6Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA 22630, USA.

Administration of Aromatase Inhibitor MPV-2213ad to Blue Fox Vixens (Vulpes Lagopus) as a Model for Contraception in Female Dogs

Lindh L1, Lindeberg H2, Banting A3, Banting S4, Sainmaa S4, Beasley S5, Korhonen HT6, Peltomäki OAT7

1University of Helsinki, Department of Production Animal Medicine, FIN-04920, Saarentaus, Finland. 2Natural Resources Institute Finland (LUKE), Production Systems, Halolantie 31 A, FIN-71750, Maaninka, Finland. 3La Bergerie, 37230, ST Etienne de Chigny, France. 4Korkeasaari Zoo, Mustikkamaanpolku 12, FIN-00570, Helsinki, Finland. 5Vetcare Oy, Liedontie 45, FIN-04600 Mäntsälä, Finland. 6Natural Resources Institute Finland (LUKE), Production Systems, Teknologiakatu 7, FIN-67100 Kokkola, Finland. 7University of Helsinki, Department of Production Animal Medicine, FIN-04920, Saarentaus, Finland.

BEHAVIOUR AND WELFARE

Machine Learning Goes Wild: Using Data From Captive Individuals to Infer Wildlife Behaviours

Rast W1, Kimmig SE2, Giese L1, Berger A1

1Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany. 2Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.

1. Remotely tracking distinct behaviours of animals using acceleration data and machine learning has been carried out successfully in several species in captive settings. In order to study the ecology of animals in natural habitats, such behaviour classification models need to be transferred to wild individuals.
However, at present, the development of those models usually requires direct observation of the target animals.

2. The goal of this study was to infer the behaviour of wild, free-roaming animals from acceleration data by training behaviour classification models on captive individuals, without the necessity to observe their wild conspecifics. We further sought to develop methods to validate the credibility of the resulting behaviour extrapolations.

3. We trained two machine learning algorithms proposed by the literature, Random Forest (RF) and Support Vector Machine (SVM), on data from captive red foxes (Vulpes vulpes) and later applied them to data from wild foxes. We also tested a new advance for behaviour classification, by applying a moving window to an Artificial Neural Network (ANN). Finally, we investigated four strategies to validate our classification output.

4. While all three machine learning algorithms performed well under training conditions (Kappa values: RF (0.82), SVM (0.78), ANN (0.85)), the established methods, RF and SVM, failed in classifying distinct behaviours when transferred from captive to wild foxes. Behaviour classification with the ANN and a moving window, in contrast, inferred distinct behaviours and showed consistent results for most individuals.

5. Our approach is a substantial improvement over the methods previously proposed in the literature as it generated plausible results for wild fox behaviour. We were able to infer the behaviour of wild animals that have never been observed in the wild and to further illustrate the credibility of the output. This framework is not restricted to foxes but can be applied to infer the behaviour of many other species and thus empowers new advances in behavioural ecology.

![Camera trap picture of a wild red fox ("Gerlinde"), collared in Berlin in 2016. The arrows symbolize the X-, Y- and Z-axis (corresponding to sway-, surge- and heave motion).](image)

![Schematic representation of the moving window approach: Starting at the beginning of a data set ("burst", here n = 10), a fixed number of consecutive data ("window", here n = 4) is taken out and analyzed. In the further step-by-step analysis, the window is shifted by one data set until the window has reached the end of the complete data set (7 steps in the schematic example).](image)
Fig. 3. ANN model performance in relation to window size. Black dots show the computed performance values. The blue line is the result of a General Additive Model, $k = 40$ [37] fit. The y-axes on the left side labelled “Model Performance” corresponds to the Model Performance line (blue) and Raw Metrics points (black). The orange line is the calculated slope of the model performance, which corresponds to the y-axis on the right side labelled “Slope”. The green vertical line represents the best window size of 79.

Fig. 4. Time-dependent composition of behaviours of Que (I) and Gerlinde (II). Stacked bars represent the proportion of each behavior at a given time of day, in each month. The data showed here span from February 2018 to January 2019 for Que and from March 2016 to February 2017 for Gerlinde.
Resting shows the highest association with GPS clusters (71 \%) and trotting the lowest (9 \%). Resting events are associated with significantly lower speed than trotting events (Wilcoxon rank sum test, \(W = 3024826, p < 0.001 \)).

(II) Resting shows the highest association with GPS clusters (53 \%) and trotting the lowest (5 \%). Resting events are associated with significantly lower speed than trotting events (Wilcoxon rank sum test, \(W = 2286090, p < 0.001 \)).
Fig. 6. Temporal distribution of trotting (A), resting (B) and ODBA values (C) for Que (I) and Gerlinde (II). The red lines indicate sunset and sunrise. (A) Black spaces indicate times at which trotting behaviour was classified, whereas white spaces indicate the classification of all other behaviours. (B) Black spaces indicate times at which resting behaviour was classified, whereas white spaces indicate classifications of all other behaviours. (C) Higher ODBA values are indicated by darker spaces.

Doi: 10.1371/journal.pone.0227317.
eCollection 2020.
Abstracts

Are There Metacognitivists in the Fox Hole? A Preliminary Test of Information Seeking in an Arctic Fox (Vulpes lagopus)

Eaton T1, Billette P2, Vonk J1

1Psychology Department, Oakland University, Rochester, MI 48309, USA.
2Animal Care, The Creature Conservancy, Ann Arbor, MI 48103, USA.

Over the last two decades, evidence has accrued that at least some nonhuman animals possess metacognitive abilities. However, of the carnivores, only domestic dogs have been tested. Although rarely represented in the psychological literature, foxes are good candidates for metacognition given that they cache their food. Two experiments assessed metacognition in one male arctic fox (Vulpes lagopus) for the first time. An information-seeking paradigm was used, in which the subject had the opportunity to discover which compartment was baited before making a choice by looking through a transparent window in the apparatus. In the first experiment, choice accuracy during seen trials was equal to choice accuracy on unseen trials. Importantly, there was no significant difference between the subject's looking behavior on seen versus unseen trials. In the second experiment, with chance probabilities reduced, the subject's choice accuracy on both seen and unseen trials was below chance. The subject did not exhibit looking behavior in any of the trials. Latencies to choose were not influenced by whether he witnessed baiting. Although we did not obtain evidence of metacognition in our tests of a single subject, we maintain that foxes may be good candidates for further tests using similar methodologies to those introduced here.

NUTRITION, FEEDING AND MANAGEMENT

The Vomeronasal Organ of Wild Canids: The Fox (Vulpes Vulpes) as a Model

Ortiz-Leal I1, Torres MV1, Villamayor PR1, López-Beceiro A1, Sanchez-Quinteiro P1

1Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.

Computed Tomography and Cross-Sectional Anatomy of the Head in the Red Fox (Vulpes Vulpes)

Mahdy MA1, Zayed M2

1Department of Anatomy and Embryology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
2Department of Animal Surgery, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.

HEALTH AND DISEASE

Coronavirus Rips Through Dutch Mink Farms, Triggering Culls

Enserink M1

1Lelystad, the Netherlands.

SARS-CoV-2 Infection in Farmed Minks, the Netherlands, April and May 2020

Oreshkova N1, Molenaar R2, Vreman S1, Harders F3, Oude Munnink BB3, Hakze-van der Honing RW4, Gerhards N1, Tolsma P1, Bouwstra R2, Sikkema RS3, Tacken MG1, de Rooij MM2, Weesendorp E3, Engelsma MY1, Bruschke CJ1, Am Smit L5, Koopmans M1, van der Poel WH1, Stegeman A7

1Wageningen Bioveterinary Research, Wageningen University and Research, Lelystad, the Netherlands.
2GD Animal Health, Deventer, the Netherlands.
3Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands.
4Regional Public Health Service Brabant-Zuid-Oost, Eindhoven, the Netherlands.
5Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
Respiratory disease and increased mortality occurred in minks on two farms in the Netherlands, with interstitial pneumonia and SARS-CoV-2 RNA in organ and swab samples. On both farms, at least one worker had coronavirus disease-associated symptoms before the outbreak. Variations in mink-derived viral genomes showed between-mink transmission and no infection link between the farms. Inhalable dust contained viral RNA, indicating possible exposure of workers. One worker is assumed to have attracted the virus from mink.

Euro Surveill. 2020 Jun; 25 (23).

Epidemiological Analysis of Arcanobacterium Phocae Isolated From Cases of Mink Dermatitis of a Single Farm

Alssahen M1, Hassan AA1, Sammra O1, Lämmler C2, Saarnisto MR3, Borowiak M4, Malorny B4, Rau J5, Prenger-Berninghoff E1, Plötz M6, Abdulmawjood A6

1Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig-Universität Gießen, Frankfurter Straße 85-91, 35392 Gießen, Germany.
2Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig-Universität Gießen, Frankfurter Straße 85-91, 35392 Gießen, Germany.
3The Research and Laboratory Services Department, Veterinary Bacteriology and Pathology Research Unit, Finnish Food Safety Authority Evira, Keskuskatu 23, 60100 Seinäjoki, Finland.
4German Federal Institute for Risk Assessment (BfR), Department for Biological Safety, Berlin, Max-Dohrn Str. 8-10, 10589 Berlin, Germany.
5Chemisches und Veterinäruntersuchungsamt Stuttgart (CVUAS), Schaflandstraße 3/2, 70736 Felsbach, Germany.
6Institute of Food Quality and Food Safety, Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Bischofsholer Damm 15, 30173 Hannover, Germany.

Epub 2020 Feb 22.

Molecular Evidence for Vaccine-Induced Canine Distemper Virus and Canine Adenovirus 2 Coinfection in a Fennec Fox

Tamukai K1, Minami S2, Kurihara R3, Shimoda H1, Mitsui H1, Maeda K2, Une Y4

1Den-en-chofu Animal Hospital, Ota-ku, Tokyo, Japan.
2Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.
3Laboratory of Veterinary Pathology, Azabu University, Kanagawa, Japan.
4Laboratory of Veterinary Pathology, Okayama University of Science, Imabari, Ehime, Japan.
5Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.

A 61-d-old fennec fox (Vulpes zerda), 11 d after receiving a multivalent, modified-live virus vaccine containing canine distemper virus (CDV), canine adenovirus 2 (CAdV-2), parainfluenza virus, parvovirus, and canine coronavirus, developed oculonasal discharge, and subsequently convulsions, and hemoptysis, and died. Microscopic changes in the cerebrum were evident, including neuronal degeneration and necrosis; intracytoplasmic eosinophilic inclusion bodies were observed in astrocytes. CDV was detected in the brain tissue by immunohistochemistry. Pulmonary lesions of multifocal necrotizing bronchopneumonia had Cowdry type A intranuclear inclusions in the bronchial epithelial cells. Electron microscopy revealed crystalline arrays of adenovirus-like particles within the intranuclear inclusions. Additionally, the hemagglutinin gene of CDV and the CAdV-2 DNA polymerase gene were detected in the fennec fox; sequence analysis showed 100% identity with those of the vaccine strain viruses. To our knowledge, vaccine-induced CDV and CAdV-2 coinfections using molecular analysis have not been reported previously. Therefore, vaccine strains should be considered prior to CDV vaccination in nondomestic carnivores.

Online ahead of print.
Spread of LA-MRSA CC398 in Danish Mink (Neovison Vison) and Mink Farm Workers

Hansen JE1, Stegger M2, Pedersen K3, Sieber RN2, Larsen J2, Larsen G2, Lilje B2, Chriél M4, Andersen PS2, Larsen AR2

1Technical University of Denmark, Soltofts Plads, DK-2800 Lyngby, Denmark.
2Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark.
3National Veterinary Institute, Ulls väg 2B 751 89 Uppsala, Sweden.
4Technical University of Denmark, Soltofts Plads, DK-2800 Lyngby, Denmark.

Epub 2020 May 1.

Characterization and Complete Genome Analysis of Pseudomonas Aeruginosa Bacteriophage vB_PaeP_LP14 Belonging to Genus Litunavirus

Shi X1, Zhao F1, Sun H2, Yu X1, Zhang C1, Liu W1, Pan Q2, Ren H1

1College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China.
2Qingdao Phagepharm Bio-tech Co, Ltd, Qingdao, Shandong, China.

A lytic Pseudomonas aeruginosa phage vB_PaeP_LP14 belonging to the family Podoviridae was isolated from infected mink. The microbiological characterization revealed that LP14 was stable at 40 to 50 °C and stable over a broad range of pH (5 to 12). The latent period was 5 min, and the burst size was 785 pfu/infected cell. The whole-genome sequencing showed that LP14 was a dsDNA virus and has a genome of 73,080 bp. The genome contained 93 predicted open reading frames (ORFs), 17 of which have known functions including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. No tRNA genes were identified. BLASTn analysis revealed that phage LP14 had a high-sequence identity (96%) with P. aeruginosa phage YH6. Both morphological characterization and genome annotation indicate that phage LP14 is a member of the family Podoviridae genus Litunavirus. The study of phage LP14 will provide basic information for further research on treatment of P. aeruginosa infections.

Doi: 10.1007/s00284-020-02011-5.
Online ahead of print.

Comparison of Streptococcus Halichoeri Isolates From Canine and Fur Animal Infections: Biochemical Patterns, Molecular Characteristics and Genetic Relatedness

Eklund M1, Aaltonen K2,3, Sironen T2,3, Raunio-Saarnisto M4, Grönthal T5, Nordgren H6, Pitkälä A1, Vapalahti O2,3,8, Rantala M7

1Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, 00014, Helsinki, Finland.
2Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland.
3Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014, Helsinki, Finland.
4Veterinary Bacteriology and Pathology Research Unit, Finnish Food Authority, P.O. Box 100, 60100, Seinäjoki, Finland.
5Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 57, 00014, Helsinki, Finland.
6Department of Equine and Small Animal Medicine, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland.
7Department of Equine and Small Animal Medicine, Veterinary Medicine, University of Helsinki, P.O. Box 75, 00104, Helsinki, Finland.

Background
Streptococcus halichoeri infections have been reported in grey seals, a European badger, a Stellar sea lion and humans, but its presence in companion and fur animals is unknown. Since 2010, S. halichoeri-like bacteria (SHL) have been isolated from fur animals and dogs in Finland. Our aim was to retrospectively investigate laboratory records for SHL from canine and fur animal infections, characterize the isolates and compare their genetic relatedness in relation to three reference strains: CCUG 48324T, originating from a grey seal, and strains 67100 and 61265, originating from humans.

Results
A total of 138 and 36 SHLs from canine and fur animal infections, respectively, were identified in the laboratory records. SHL was commonly associated with skin infections, but rarely as the only species. A
set of 49 canine and 23 fur animal SHLs were further characterized. MALDI-TOF confirmed them as being S. halichoeri. The growth characteristics were consistent with the original findings, but isolates were catalase positive. In total, 17 distinct API 20 Strep patterns were recorded among all 75 isolates tested, of which pattern 5563100 was the most common (n = 30). Antimicrobial resistance to erythromycin and clindamycin was common in canine isolates, but rare in fur animal isolates. Three clusters were observed by PFGE, and 16S rRNA sequencing revealed 98.1-100% similarities with the human strains and 98.1-99.5% with the seal strain. A phylogenetic tree of concatenated 16S rRNA and rpoB revealed closely related isolates with two clades. Fifteen canine isolates were identical to the human strains based on concatenated 16S rRNA and rpoB sequencing.

Conclusions
Streptococcus halichoeri appears to be quite a common bacterial species in the skin of dogs and fur animals. The clinical significance of S. halichoeri is uncertain, as it was rarely isolated as a monoculture. No apparent temporal or spatial clustering was detected, but isolates from different sources were genetically very similar. Because many canine isolates were genetically similar to the human reference strains, transmission between dogs and humans may be possible. WGS sequencing of strains from different sources is needed to further investigate the epidemiology and virulence of S. halichoeri.

Urolithiasis and Cystitis Associated With Staphylococcus Delphini Group A and Mortality in Post-Weaning Mink Kits (Neovison Vison)

Mundbjerg K1, Pedersen PE2, Sebbelov I3, Honoré OL3, Aalbæk B4, Larsen C5, Moore AE4, Hammer AS4

1Department of Veterinary and Animal Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.
2Exotic Pet Medicine Service, Alfort University Veterinary Teaching Hospital, Ecole Nationale Vétérinaire d’Alfort, 7 Avenue du Général de Gaulle, Maisons-Alfort Cedex 94704, France.
3Department of Veterinary Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.
4Canadian Veterinary Urolith Centre, University of Guelph, Lab Services, Guelph, Ontario N1H 8J7, Canada.
Epub 2020 May 5.

Update on Diseases in Chinchillas: 2013-2019

Martel A1, Donnelly T3, Mans C3

1Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.
2Exotic Pet Medicine Service, Alfort University Veterinary Teaching Hospital, Ecole Nationale Vétérinaire d'Alfort, 7 Avenue du Général de Gaulle, Maisons-Alfort Cedex 94704, France.
3Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.

Doi: 10.1016/j.cvex.2020.01.005.
SCIENTIFUR is published as four issues per year (one volume).

SCIENTIFIC ARTICLES. Papers submitted for publication as scientific articles are received with the understanding that the work has not been published before, and is not considered for publication elsewhere and has been read and approved by all authors. In regard to forwarded articles the author(s) alone is (are) responsible for the scientific content of the article. Experimental methods used and reported in SCIENTIFUR shall meet ethical standards of animal treatment.

MANUSCRIPTS
Manuscripts must be sent by e-mail, preferably in Microsoft Word. The material should be sent to: E-mail: Scientifur@dca.au.dk. In case of no access to e-mail, manuscripts can be forwarded to:

SCIENTIFUR, Danish Centre for Food and Agriculture, Aarhus University, P.O. Box 14, DK-8830 Tjele, Denmark

Manuscripts must be written in English, typed with double spacing and with page and line numbering and consisting of:

Title, which should be concise and informative, but as short as possible, and contain the main key words.

Authors name(s) as well as name(s) and address(es) of the institutions to which the work is attributed. E-mail address of the corresponding author should be given.

Summary/Abstract.

Keywords in alphabetic order if not included in the title.

Text. The text should normally be divided into: Introduction, Material and Methods, Results, Discussion, Acknowledgements and References and follow internationally accepted rules. Double documentation in both figures and tables will not be accepted.

Illustrations. All graphs, photos and pictures are considered as figures. All drawings have to be professionally drafted (photocopies are not an acceptable standard). The illustrations should be JPG-, GIF- or TIF-files. Any halftones must exhibit high contrast and text and other details must be large enough to retain the readability even after reduction of figure size to single column (width 80 mm). The width of 170 mm can also be accepted. Colour illustrations can be included in SCIENTIFUR.

Tables. Each table should be typed on a separate page. Tables must be numbered consecutively with Arabic numerals, and have a self-explanatory title. Tables should be planned to fit a final width of 80 or 170 mm.

References. References in the text should be made according to the following examples:

The list of references should be arranged in alphabetic order according to the name of the first author and the year of publication within the names. The year of publication should be written between the name(s) and the title:
